PDA

View Full Version : Help regarding carousel in Dreamweaver



dracos1337
21 Jul 2011, 11:54 PM
Hi guys, I've been developing a webapp in dreamweaver. For the js file i am using a scrolling carousel. Thus far i have been able to get the carousel working but I have encountered a problem when attempting to set different background colors to the cards.

Heres the code i am using for the html file.


<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Carousel with scrollable cards</title>

<!-- Sencha Touch CSS -->
<link rel="stylesheet" href="../../resources/css/sencha-touch.css" type="text/css">

<!-- Sencha Touch JS -->
<script type="text/javascript" src="../../sencha-touch.js"></script>

<!-- Application JS -->
<script type="text/javascript" src="index.js"></script>
<style>
.x-fullscreen {
background-color: default;

}

img.aligncenter {
display: block;
margin-left: auto;
margin-right: auto;
padding: 1px;
}

img.aligncenter,
img.alignleft,
img.alignright {
border: 2px solid #ddd;
padding: 1px;
}

img.noborder {
border: none !important;
}

.alignleft {
float: left;
}

.alignright {
float: right;
}

a.entry-title,
.entry h2.post-title,
.entry h2 a {
color:#1A5C9A;
/* font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif; */
font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif;
font-weight: 600;
font-size: 20px;
line-height: 20px;
}

.entry h2.post-title {
color: #111;

}

.entry h2.post-title,
.entry h2 a {
display: block;
margin: 20px 0 0;
font-size: 36pt;
}

h4 {
margin-top:0;
font-size:11px;
font-weight:normal;
display:block;
letter-spacing: 0;
color:#999;
margin-bottom:10px;
}

.entry h2 {
font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif;
font-weight: 600;
letter-spacing: normal;
}

.entry h4 {
font-size: 13px;
}

.entry strong {
font-weight: bold;
}

.entry em {
font-style: italic;
}

p,
pre {
margin: 0 0 12px;
}
.link { font-family: Georgia, "Times New Roman", Times, serif;
font-size: 12pt;
}
.text1 { font-family: Georgia, "Times New Roman", Times, serif;
font-size: 14pt;
}
.Header1 { font-family: Tahoma, Geneva, sans-serif;
font-size: 24pt;
}
.ContentTable { font-family: Arial, Helvetica, sans-serif;
font-size: 16pt;
}
.ContentTable1 {font-family: Arial, Helvetica, sans-serif;
font-size: 16pt;
}
.Contentinfo { font-family: Arial, Helvetica, sans-serif;
font-size: 18pt;
}
.Title { font-family: Arial, Helvetica, sans-serif;
font-size: 24pt;
font-style: normal;
line-height: normal;
}
body,td,th {
font-family: "Helvetica Neue", HelveticaNeue, Helvetica-Neue, Helvetica, "BBAlpha Sans", sans-serif;
}
</style>
</head>

<body>
<div class="entry">
<h2 class="post-title"><img src="../../../../../Documents/FYP/rss/pics/SP_Logo.jpg" width="346" height="98"></h2>
<p align="center">&nbsp; </p>
<p align="right"><a href="Ctpg.html">Return to Main menu</a></p>
<p align="center">&nbsp;</p>
<p align="center">ET1003</p>
<div align="center">
<pre><span class="Header1">Digital Electronics</span>



</pre>
</div>
<div align="center">
<pre>
<span class="text1">Combinational Circuit of Gates</span>
</pre>
</div>
<pre><a href="../Fyp2.html" title="Drac" class="link">



<p align="center" class="meta"><img src="../../../../../Documents/FYP/rss/pics/GIF & PNG/NOT Gate Dev 1/NOT Gate 00.png" width="374" height="197"></p>
</div>

<div class="entry">

<p align="center" class="Contentspgheader"><strong>Lecture Contents</strong></p>
<p align="center" class="ContentTable">&nbsp;</p>
<p align="center" class="ContentTable">Table of Contents</p>
<p align="center" class="ContentTable">Boolean Algebra</p>
<p align="justify" class="ContentTable"><a href="IntroBA.html"><span class="ContentTable1"><a href="IntroBA.html"><img src="Tb1.jpg" alt="" width="116" height="122"></a></span></a></p>
<p align="center" class="ContentTable">&nbsp;</p>
<h2 class="post-title">&nbsp;</h2>

</div>

<div class="entry">

<h2 align="center" class="post-title">Boolean Algebra Basic Operations<a href="bitesized.html"><img src="../../../../../Documents/FYP/rss/pics/bannerbitesized.jpg" alt="" width="276" height="96" align="right"></a></h2>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>Some operations of ordinary algebra, in particular multiplication <em>xy</em>, addition <em>x</em> + <em>y</em>, and negation ?<em>x</em>, have their counterparts in Boolean algebra, respectively the Boolean operations AND, OR, and NOT, also called<strong>conjunction</strong> <em>x</em>?<em>y</em>, or K<em>xy</em>, <strong>disjunction</strong> <em>x</em>?<em>y</em>, or A<em>xy</em>, and <strong>negation</strong> or <strong>complement</strong> ¬<em>x</em>, N<em>x</em>, or sometimes !<em>x</em>. Some authors use instead the same arithmetic operations as ordinary algebra reinterpreted for Boolean algebra, treating <em>xy</em> as synonymous with <em>x</em>?<em>y</em> and <em>x</em>+<em>y</em> with <em>x</em>?<em>y</em>.</p>
<p><strong>Conjunction</strong> <em>x</em>?<em>y</em> behaves on 0 and 1 exactly as <strong>multiplication</strong> does for ordinary algebra: if either <em>x</em> or <em>y</em> is 0 then <em>x</em>?<em>y</em> is 0, but if both are 1 then <em>x</em>?<em>y</em> is 1.</p>
<p><strong>Disjunction</strong> <em>x</em>?<em>y</em> works almost like <strong>addition</strong>, with 0?0 = 0 and 1?0 = 0?1 = 1. However there is a difference: 1?1 is not 2 but 1.</p>
<p><strong>Complement</strong> resembles ordinary <strong>negation</strong> in that it exchanges values. But whereas in ordinary algebra negation interchanges 1 and ?1, 2 and ?2, etc. while leaving 0 fixed, in Boolean algebra complement interchanges 0 and 1. One can think of ordinary negation as reflecting about 0, and Boolean complement as reflecting about the midpoint of 0 and 1. Complement can be defined arithmetically as ¬<em>x</em> = 1?<em>x</em> because the latter maps 0 to 1 and vice versa, the behavior of ¬<em>x</em>.</p>
<p>In summary the three <strong>basic Boolean operations</strong> can be defined arithmetically as follows.</p>
<table align="center">
<tbody>
<tr>
<td></td>
<td><em>x</em>?<em>y</em></td>
<td>=</td>
<td><em>xy</em></td>
</tr>
<tr>
<td></td>
<td><em>x</em>?<em>y</em></td>
<td>=</td>
<td><em>x</em> + <em>y</em> ? <em>xy</em></td>
</tr>
<tr>
<td></td>
<td>¬<em>x</em></td>
<td>=</td>
<td>1 ? <em>x</em></td>
</tr>
</tbody>
</table>
<p class="meta">&nbsp;</p>
<p>&nbsp;</p>

<p>&nbsp;</p>
</div>

<div class="entry">
<h2 align="center" class="post-title">1.2<a href="bitesized.html"><img src="../../../../../Documents/FYP/rss/pics/bannerbitesized.jpg" alt="" width="276" height="96" align="right"></a></h2>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p align="center" class="meta">All Digital (logic) circuits operate in the binary mode, i.e. Digital circuits operate only in 2 states which are called the: High (abbreviated H) state and Low(L) state.<br>
What this means is that input &amp; output voltages are within one of two voltage ranges which are denoted as Logic H, also referred to as Binary 1, and Logic L or Binary 0<br>
This characteristic of digital circuits allows us to use Boolean algebra as a tool to analyze and design logic circuits. The topics which follow introduces the basic logic<br>
gates which are the building blocks of Digital Electronics and the theory of Boolean Algebra, which is used in the design and analysis of digital circuits.</p>
<p align="center" class="meta">In Boolean algebra, constants and variables can only have two values:</p>
<p align="center" class="meta"><br>
Logic 1 or Logic 0</p>
<p align="center" class="meta"><br>
Boolean 1 or 0 do not actually represent numbers. They are synonymous with: </p>
<p align="center" class="meta">True or False<br>
On or Off<br>
Yes or No<br>
High or Low</p>
<p align="center" class="meta"><br>
With High - Low being the most appropriate in describing the behaviour of digital circuits in Digital circuits, Boolean 1 and 0 thus represent voltage levels, which are also referred to as the LOGIC LEVELs. Boolean algebra can be used to express the effects of digital circuits on logic inputs.</p>
<p>&nbsp;</p>
</div>
<div class="entry">
<h2 align="center" class="post-title">1.3<a href="bitesized.html"><img src="../../../../../Documents/FYP/rss/pics/bannerbitesized.jpg" alt="" width="276" height="96" align="right"></a></h2>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p align="center" class="meta">Electronic circuits that operate on binary data are called:<br>
Digital Logic Systems</p>
<p align="center" class="meta"><br>
There are in general, 2 types of Digital Logic Systems:</p>
<p align="center" class="meta">(i) Combinational Logic systems *<br>
(ii) Sequential Logic systems *</p>
<p align="center" class="meta"><img src="logcsketch1.jpg" alt="" width="436" height="125"><br>
Circuits within the system that carry out elementary logic operations are called gates.</p>
<p align="center" class="meta">NB:<br>
• Combinational circuits: the output(s) at any instant is a<br>
direct response to the input combinations at that instant.<br>
There is no feedback between the output(s) and input(s).<br>
• Sequential circuits: the output(s) at any instant depends not<br>
only on the current values (states) of the inputs but also<br>
their previous values, i.e. there is an element of memory</p>
<p>&nbsp;</p>
</div>
<div class="entry">
<h2 align="center" class="post-title">1.4<a href="bitesized.html"><img src="../../../../../Documents/FYP/rss/pics/bannerbitesized.jpg" alt="" width="276" height="96" align="right"></a></h2>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p align="center" class="meta">Truth-Tables<br>
A truth table is a means to show how the outputs of a logic system respond to a given input<br>
combination of logic levels. It lists all the possible input combinations of the logic levels present and the corresponding output<br>
logic levels. Truth tables are typically used to describe the behaviour of Combinational Logic circuits.<br>
</p>
<p align="center" class="meta">A truth table used to describe a N-input circuit will have a 2N different input combinations.<br>
</p>
<p align="center" class="meta">&nbsp;</p>
<p align="center" class="meta">In a 3-input truth table there are 8 different input combinations.</p>
<p align="center" class="meta"> <img src="truthtablecircuit1.jpg" alt="" width="454" height="161"></p>
<p align="center" class="meta">In a 4-input truth table there are 16 different input combinations.</p>
<p>&nbsp;</p>
</div>
</body>
</html>